Добро пожаловать на Pro Pawn - Портал о PAWN-скриптинге.
Показано с 1 по 4 из 4
  1. #1
    Аватар для Osetin
    •Администратор•

    Статус
    Оффлайн
    Регистрация
    26.03.2013
    Адрес
    ♔Osetia, Vladikavkaz♔
    Сообщений
    3,432
    Репутация:
    1093 ±

    Коммутация ЛВС

    Что такое коммутация ЛВС?

    Коммутация в локальных сетях (ЛВС) является одной из основ происходящего сегодня перехода к использованию технологий следующего поколения. Традиционные ЛВС рассчитаны на совместное использование ресурсов пользователями небольшого числа станций (обычно до 50). К числу разделяемых ресурсов относятся файлы и периферийные устройства (принтеры, модемы и т.п.). Поскольку картина трафика в таких сетях имеет ярко выраженный взрывной характер, использование разделяемой между всеми пользователями полосы может приводить к существенному замедлению работы. Стандарты Ethernet и token ring регулируют доступ сетевых устройств к разделяемой среде передачи. Когда одно из устройств передает данные в сеть, все остальные должны ждать окончания передачи, не делая попыток передать в сеть свои данные.

    Такая схема разделения доступа к среде очень эффективна в небольших сетях, используемых для совместного использования файлов или принтеров. Сегодня размер и сложность локальных сетей значительно возрасли, а число устройств измеряется тысячами. В сочетании с ростом потребностей пользователей недетерминистический характер традиционных сеетвых архитектур (таких как Ethernet и token ring) начал ограничивать возможности сетевых приложений. Коммутация ЛВС является популярной технологией, способной продлить жизнь существующих ЛВС на базе Ethernet и token ring. Преимущества коммутации заключаются в сегментировании сетей - делении их на более мелкие фрагменты со значительным снижением числа станций в каждом сегменте. Изоляция трафика в небольшом сегменте приводит к многократному расширению доступной каждому пользователю полосы, а поддержка виртуальных ЛВС (VLAN) значительно повышает гибкость системы.
    Коммутация обеспечивает сегментирование ЛВС с разделяемой средой

    Администраторы сетей должны представлять себе технологические аспекты коммутации ЛВС и стоимость перехода к использованию коммутаторов в существующих сетях. Технологические вопросы включают понимание архитектуры коммутаторов ЛВС различий между коммутацией на MAC-уровне и маршрутизацией на сетевом, а также разницы между выполнением операций на программном и аппаратном уровне. Экономические аспекты включают сравнение соотношения производительность/цена для маршрутизаторов и коммутаторов, оценку эффективности вложения средств, а также расходов на организацию и поддержку сетей (включая управление сетью).
    Технологические аспекты

    Еще недавно для сегментации ЛВС использовались мосты, но развитие технологий позволило использовать для этого более эффективные решения. Еще несколько лет назад для объединения сегментов ЛВС использовались маршрутизаторы - устройства сетевого уровня. Маршрутизаторы обеспечивают эффективную сегментацию, но они достаточны дороги и сложны в управлении. Появление коммутаторов, основанных на базе специализированных контроллеров ASIC, сделало эти устройства значительно более эффективным инструментом сегментации сетей.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Такие устройства зачастую кроме традиционной коммутации на MAC-уровне выполняют функции маршрутизации. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления.

    Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Коммутаторы, реализующие также функции сетевого уровня (маршрутизацию), оснащены, как правило, RISC-процессорами для выполнения ресурсоемких программ маршрутизации.



    Рисунок 2.1 Блок-схема коммутатора с архитектурой cross-bar

    Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации. Вопросы масштабирования и стратегия разработчиков коммутаторов в области организации магистралей и/или рабочих групп определяет выбор ASIC и, следовательно, - скорость продвижения коммутаторов на рынок.

    Существует 3 варианта архитектуры коммутаторов - переключение (cross-bar) с буферизацией на входе, самомаршрутизация (self-route) с разделяемой памятью и высокоскоростная шина. На рисунке 2.1 показана блоксхема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through). Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственного возможного соединения коммутатор блокируется (рисунок 2.2). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.



    Рисунок 2.2 Блокировка коммутатора с архитектурой cross-bar

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 2.3 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.



    Рисунок 2.3 Архитектура коммутатора с разделяемой памятью

    На рисунке 2.4 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразубтся в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.



    Рисунок 2.4 Коммутатор с высокоскоростной шиной

    Понимание модели OSI весьма полезно при рассмотрении различий между коммутацией на уровне MAC и маршрутизацией а сетевом уровне. Коммутация (сервис канального уровня) лежит ниже в иерархии уровней модели OSI, нежели маршрутизация (сервис сетевого уровня). Следовательно, коммутаторам не требуется так много интеллектуальных возможностей, как маршрутизаторам. В результате коммутаторы работают существенно быстрее, чем маршрутизаторы.

    Коммутаторы работают с протоколами MAC-уровня (Ethernet, token ring и т.п.), а маршрутизаторы - с протоколами сетевого уровня (IP, IPX). На рисунке 2.5 показаны соотношения между сервисом MAC-уровня (коммутация) и сетевого уровня (маршрутизация). Коммутация использует "плоское" представдение сети, а маршрутизация понимает "сетевую иерархию". Поскольку маршрутизаторы фактически являются устройствами для объединения больших сетей на базе протоколов IP и IPX, обеспечение услуг маршрутизации играет важную роль для многих сетей. Когда коммутаторы начнут выполнять большую часть функций маршрутизации, роль традиционных маршрутизаторов в построении сетей существенно изменится.



    Рисунок 2.5 Коммутация и маршрутизация в модели OSI

    Большинство современных сетевых устройств - концентраторы, коммутаторы, маршрутизаторы - поддерживают отдельные функции коммутации и маршрутизации. Администратор сети должен решить, какие услуги каждого типа требуются в сети и чье оборудование наиболее соответствует задачам.

    Аппаратные реализации коммутаторов ЛВС используют специализированные микросхемы ASIC (собственной разработки или других фирм), в которых реализованы функции коммутации. Аппаратная реализация обеспечивает более высокую скорость по сравнению с программной. Однако, этого еще недостаточно для создания хорошего коммутатора. При разработке ASIC должны создавать и проверяться программы коммутации, реализуемые в микросхемах. После создания контроллера программный код уже нельзя изменить, поэтому эффективность машины коммутации играет важнейшую роль. Стремление быстрее предложить устройства на рынок зачастую определяет уровень функциональности ASIC. Программные решения используют процессоры общего назначения, для работы которых требуется загрузить программный код. Преимущества такого подхода включают более высокий уровень сервиса (например, маршрутизация), но эти преимущества зачастую полностью подавляются ростом задержек.
    Экономические аспекты

    Очевидно, что основной причиной столь быстрого внедрения коммутаторов является более низкая, по сравнению с традиционными маршрутизаторами, стоимость самих устройств и существенное снижение расходов на организацию и поддержку сетей. Будучи устройством MAC-уровня, коммутатор не требует какой-либо настройки и обеспечивает решение plug-and-play (это относится прежде всего к простым коммутаторам). Коммутаторы легко позволяют решить проблему расширения полосы и могут работать в сетях с традиционными маршрутизаторами, обеспечивая деление сети на сегменты, связываемые потом маршрутизаторами. Поскольку на канальном уровне сеть выглядит плоской, все дополнительные услуги маршрутизации должны выполняться традиционными маршрутизаторами. Таким образом, коммутаторы в рабочих группах позволяют эффективно сегментировать сеть, оставляя маршрутизаторам функции связи между сегментами.

    Другой причиной быстрого роста популярности коммутаторов является то, что они оптимизированы для решения различных сетевых задач (в частности для организации рабочих групп). Поскольку потребности рабочих групп связаны прежде всего с высокой скоростью обмена и обеспечением неблокируемых путей передачи трафика между членами группы, коммутаторы ЛВС содержат в качестве ядра аппаратную машину коммутации (switching engine). Массовое производство контроллеров ASIC привело к значительному снижению цен. Дополнительные высокоскоростные порты (uplink) для подключения к серверам, маршрутизаторам или магистралям обеспечивают пользователям рабочих групп удовлетворение всех возникающих потребностей. Гибкое и масштабируемое выделение полосы делает коммутаторы ЛВС важной частью процесса модернизации существующих сетей на базе разделяемых сред. Возможность простого переноса из одной точки сети в другую обеспечивает высокую эффективность капиталовложений, поскольку при изменении задач или структуры сети не приходится покупать новые устройства взамен имеющихся.

    Возможно наибольшая экономия в результате использования коммутаторов связана с эффектиной сегментацией сети (рост пропускной способности) и простотой управления (plug-and-play). В отличие от маршрутизаторов, коммутаторы ЛВС практически не требуют настройки и не отнимают много времени у сетевых администраторов. MAC-адреса подключенных к коммутатору устройств определяются автоматически, а сложные схемы IP-адресации, используемые в сегодняшних сетях остаются полностью прозрачными для рабочих групп. Установка коммутатора в рабочей группе обычно не требует ничего, кроме подключения устройств к портам коммутатора взамен портов концентратора или размещения коммутатора между концентраторами и маршрутизатором как показано на рисунках 2.6, 2.7 и 2.8.



    Рисунок 2.6 Традиционная ЛВС на основе концентратора



    Рисунок 2.7 Коммутатор ЛВС взамен хаба



    Рисунок 2.8 Совместное использование коммутаторов и концентраторов
    Коммутаторы ЛВС обеспечивают расширение агрегатной полосы

    Сегментирование ЛВС с разделяемой средой можно проиллюстрировать на примере разделения участников большой конференции на специализированные группы, разделенные в разных помещениях. Сегментация сети обеспечивает многократный рост агрегатной полосы, позволяя вместо одного устройства вести передачу многим устройствам сразу. Сети Ethernet и token ring аналогичны пленарным заседаниям конференций, где все слушают одного оратора. Заседания рабочих групп позволяют выступать одному человеку в каждой группе. Таким образом и сегментация сетей позволяет вести передачу данных нескольким устройствам одновременно (по одному на сегмент).

    При рассмотрении вопросов коммутации ЛВС важно понимать картину трафика и изменения в структуре ЛВС. Картины трафика в традиционных ЛВС с состязательным доступом к среде и сетях с выделенной полосой для каждого порта существенно отличаются. При изучении картины администратор наверняка увидит, что отдельным пользователям или группам требуется более широкая полоса, а часть задач весьма чувствительна к задержкам.
    Изменения в структуре ЛВС и картине трафика

    Сейчас уже очевидно, что используемый в сетях с разделяемой полосой состязательный механизм доступа является основной причиной недостаточной пропускной способности традиционных ЛВС. Напомним, что в каждый момент времени передавать данные в разделяемую среду может лишь одна станция - остальные должны "слушать". Реализации механизмов доступа в сетях Ethernet и token ring отличаются, следовательно, будут различаться и результаты использования коммутаторов.

    Доступ к среде в сетях Ethernet основан на алгоритме CSMA/CD (множественный доступ с детектированием несущей и обнаружением конфликтов). Когда станции требуется передать данные, она сначала проверяет канал на предмет его использования другой станцией (обнаружение несущей - CS). Если среда в данный момент не используется, станция может начать передачу. Если среда занята, станция повторяет попытку доступа по истечении случайного интервала времени. Несмотря на предварительное прослушивание среды две (или более) станции могут начать передачу одновременно - возникает конфликт или коллизия (CD). В этом случае обе станции должны немедленно прекратить передачу и пытаться повторить ее по истечение случайного интервала времени.

    В небольших сетях взрывной характер трафика (пакеты данных передаются лишь время от времени) обеспечивает достаточно малую вероятность возникновения конфликтов. В большой сети интервалы между пакетами сокращаются и вероятность коллизий растет. Это приводит к тому (рисунок 2.9), что в больших сетях возможна (хотя и маловероятна) ситуация, когда какая-либо станция (например, с медленным процессором) вообще не сможет получить доступа к среде передачи, поскольку какой-либо очередности доступа не соблюдается (известный принцип - кто первый встал, тому и тапочки). Сегментация такой сети позволит обеспечить существенное повышение пропускной способности.



    Figure 2.9 Пример сети рабочей группы
    Число станций и эффективная полоса

    В сетях Token ring доступ к среде основан на передаче маркера (token) - специального пакета, распространяемого по кольцу. Получившая маркер станция может начать начать передачу своих данных в сеть. Здесь не возникает конфликтов, но станция, не владеющая маркером, не может передавать данные, даже при свободной среде. В маленьких сетях цикл передачи маркера по кольцу занимает немного времени и станции не ждут подолну возможности начать передачу. Однако, в большой сети время ожидания может стать слишком большим. Разделение кольца на несколько меньших колец с помощью коммутатора (сегментация) уменьшает число станций в кольце и снижает время ожидания маркера. Кроме того, коммутация token ring повышает устойчивость сети к повреждениям.

    Причиной нехватки пропускной способности является то, что каждая станция сегмента слышит "разговоры" всех других станций. Переход к ориентированным на организацию соедиений "точка-точка" технологиям типа ATM, является важнейшим шагом вперед. Преимущества полностью коммутируемых сетей, ориентированных на организацию соединений, очевидны, но что делать с имеющимися сетевыми приложениями и услугами на основе широковещательных пакетов в традиционных ЛВС. До тех пор, пока все эти приложения не будут переписаны для сетей на основе организации прямых соединений, проблема широковещательного трафика будет основным вопросом в связи с коммутацией ЛВС.



    Рисунок 2.10 Число пользователей Ethernet и эффективная полоса
    Различные требования пользователей к полосе

    Широкополосные приложения, такие как multimedia и базы данных клиент-сервер являются достаточно тяжелым грузом для ЛВС с разделяемой средой, рассчитанных просто на совместное использование файлов и принтеров. Использование состязательных механизмов доступ к среде не позволяет обеспечить пользователям графических приложений высокоскоростной перенос по сети больших объемов данных с малой задержкой. Администраторы сетей часто решают эту проблему организацией для таких пользователей отдельных сегментов без перехода на высокоскоростные технологии типа FDDI. Подбор числа пользователей для каждого порта коммутатора обеспечивает экономичное решение проблемы недостаточной пропускной способности без перехода на новые технологии.

    Файловые серверы, серверы приложений и пользователи с высокими запросами можно подключить к коммутатору через скоростные порты Fast Ethernet, FDDI или ATM. Этот путь требует замены сетевых адаптеров в серверах и, возможно, кабельной системы, но обеспечивает гибкое и масштабируемое решение.

    Широкополосные приложения отнюдь не являются единственной проблемой сетевых администраторов. Чувствительные к задержкам задачи реального времени (например, видео) в разделяемых средах с недетерминистическим способом доступа (типа Ethernet).
    Коммутация ЛВС повышает уровень гибкости

    Коммутация ЛВС позволяет создавать виртуальные сети (VLAN) из групп пользователей, основываясь на их задачах, а не по физическому расположению в сети. Технология виртуальных ЛВС позволяет пользователям свободно перемещаться по сети, оставаясь в своей рабочей группе.

    Простота приспособления виртуальных ЛВС к перемещению и добавлению узлов, а также другим изменениям в сети вместе с эффективной интеграцией традиционных ЛВС в сети ATM способна поразить воображение каждого. Перестройка сети с учетом роста числа мобильных пользователей и необходимости обеспечения доступа на базе правил, позволяет многочисленным пользователям свободно работать даже находясь за пределами офиса. Планирование интеграции традиционных ЛВС в сети на базе ATM требует от администраторов с осторожностью относится к выбору технологии. Правильный выбор позволит создать эффективную сеть и обеспечит возможность поэтапного перехода на новые технологии.
    Виртуальные ЛВС упрощают перенос, добавление или удаление узлов

    Сотрудники многих организаций работают над различными проектами, группируясь в рабочие команды для решения конкретных задач. По мере решения задачи состав группы может меняться, а по завершении потребуется создание новой группы. Организация рабочих групп по физическому расположнию компьютеров (как это делается в сетях с разделяемой средой) зачастую создает трудноразрешимые проблемы. Приходится переносить рабочие места пользователей или передавать большие объемы информации через перегруженные маршрутизаторы. Кроме того, трудоемкость настройки маршрутизаторов делает практически нереальной задачу создания временных рабочих групп из числа сотрудников, удаленных друг от друга. Виртуальные ЛВС позволяют группировать пользователей, не обращая внимание на их физическое расположение в сети - вы можете создать рабочую группу из сотрудников, расположенных в разных зданиях или даже в разных городах.

    Возможность организации VLAN с использованием WAN-каналов требует интеграции коммутаторов ЛВС и ATM. На рисунке 2.11 показан пример использования ATM для организации логического соединения между портами удаленных коммутаторов ЛВС. Таким образом можно создавать широковещательные домены (виртуальные ЛВС) из станций, расположенных на значительном удалении



    Рисунок 2.11 Логические соединения коммутаторов ATM через WAN-каналы

    Виртуальные ЛВС обеспечивают многочисленные преимущества. Рассмотрим для примера организацию с большим числом работающих на выезде сотрудников. При переезде такого сотрудника в другое место меняется его сетевой адрес и требуется полностью обновлять таблицу маршрутизации. Пользователю после такого переезда также придется вносить конфигурационные изменения для получения привычного сервиса. Виртуальные ЛВС на базе коммутаторов с поддержкой функций маршрутизации значительно упрощают операции, связанные с перемещениями пользователей. Возможно обеспечить полное сохранение рабочей среды независимо от местоположения пользователя (рисунок 2.12).



    Рисунок 2.12 Построение виртуальной ЛВС

    В дополнение к возможности организации распределенных рабочих групп технология VLAN позволяет создавать такие группы на основе широкого набора критериев (правил), задаваемых администратором сети. Таким образом, вопросы доступа, обеспечения безопасности, ведения счетов на оплату услуг можно решать автоматически за счет задания соответствующих правил организации VLAN. Виртуальные сети на базе правил позволяют обеспечить высочайшую гибкость при надежном обеспечении безопасности сети. Управление VLAN на основе технолгии drag-and-drop позволяет легко настраивать права доступа, создавать и менять логические рабочие группы.



    Рисунок 2.13 Построение виртуальной ЛВС
    Коммутация ЛВС обеспечивает интеграцию традиционных рабочих групп в сети ATM

    Возможно одним из основных преимуществ коммутации ЛВС является возможность удовлетворения разнообразных потребностей пользователей в части предоставления полосы и типа сервиса. Как мы показали ранее установка коммутатора ЛВС, работающего на MAC-уровне не требует внесения изменений на уровне рабочих станций или уже имеющихся в сети маршрутизаторов. За счет возможности управления числом станций на каждом порту коммутатора администратор может обеспечить каждому пользователю или приложению требуемую полосу и величину задержки. Высокоскоростные магистральные модули (uplink) обеспечивают хорошее масштабирование за счет возможности подключения к высокоскоростным серверам и магистралям. Поскольку установка коммутаторов практически не требует настройки, добавление коммутаторов вследствие роста сети не вызывает затруднений и не требует высоких расходов.

    Наконец, возможность поэтапной модернизации позволяет оценить необходимость использования новых технологий (типа ATM) для расширения возможностей существующих сетей. Реализация сетей полностью на базе ATM требует значительных средств и возможность использования преимуществ этой технологии при сохранении существующих сетей Ethernet и token ring имеет очень важное значение.

  2. #2
    Аватар для #MAVRIN
    Пользователь

    Статус
    Оффлайн
    Регистрация
    10.06.2013
    Сообщений
    170
    Репутация:
    70 ±

  3. #3
    Аватар для Satan Hussein
    Пользователь

    Статус
    Оффлайн
    Регистрация
    15.10.2013
    Сообщений
    128
    Репутация:
    5 ±
    Марвин, пиши комментарии хотя бы с какой то смысловой нагрузкой, уже 2 коммента узрел с одним только смайлом.

  4. #4
    Аватар для Osetin
    •Администратор•

    Статус
    Оффлайн
    Регистрация
    26.03.2013
    Адрес
    ♔Osetia, Vladikavkaz♔
    Сообщений
    3,432
    Репутация:
    1093 ±
    верно говорит Сатан

 

 

Информация о теме

Пользователи, просматривающие эту тему

Эту тему просматривают: 1 (пользователей: 0 , гостей: 1)

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •